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TECHNICAL SUMMARY

The objective of this project is to determine the yield bias of underground nu-
clear tests induced by the presence of a high velocity descending slab beneath
the test site. Specifically, the effect of the Aleutian slab is being investigated
on the US underground tests Longshot, Milrow, and Cannikan. P wave seis-
mograms will be synthesized using dynamic ray tracing and superposition
of Gaussian l)ealis in three-dimensional models of the Aleutian slab deter-
mined from P travel time delays. Focusing and defocusing and multipathing
at teleseismic distances will be evaluated by comparison of observed with
synthetic seismograms of the Aleutian tests.

Data collection for of Amchitka P waveforms and amplitudes was ini-
tiated. A no cost extension of this project was requested and granted by
AFGL to allow for collection of the necessary data to complete the project.
Pending completion of the data collection, work was begun on a project to
compute complete regional seismograms in crustal and upper mantle models
having gradients in layers. This project will be included in a new proposal
and directly contributes to the AFGL treaty verification program, with its
current emphasis on CTBT monitoring at local and regional distances.

In collaboration with Danny Harvey., the locked mode method of syn-
thesizing complete regional seismograms (Harvey, 1981) was modified to in-
clude the Langer uniform asymptotic approximation to vertical wavefunc-
tions within layers having linear vertical velocity gradients. Good agree-
ment is obtained in gradient models between synthetics computed using the
Langer-locked mode method, the colocation method, and the conventional
locked mode method in models parameterized by thin homogeneous layers.
Errors in calculated displacement introduced by the use of the Langer ap-
proximation remain less than several percent for wavelengths A < 0.2V/VV.
Whenever it is necessary to represent gradients accurately, the Langer-locked
mode method is computationally more efficient than the locked mode method
using thin homogeneous layers. By reducing the number of parameters
needed to describe an Earth model, the Langer-locked mode method will
also simplify the inverse problem of determining structure using observed
and synthetic regional seismograms. Test calculations of regional seismo-
grams confirm that the Pn and Sn phases are strongly affected by the mag-
nitude of the velocity gradients beneath the Moho, but that Lg is only weakly
.Fected by the details of crustal layering.
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INCORPORATION OF VELOCITY GRADIENTS IN TIlE

SYNTHESIS OF COMPLETE SEISMOGRAMS BY TIlE LOCKED MODE METHOD

V.F. Cormier1 and D. Harvey 2

I Department of Geology and Geophysics

University of Connecticut, Box U-45

Storrs, CT 06269-2045

2 CIRES

University of Colorado

Boulder, CO 80309

ABSTRACT

Any realistic crustal and upper mantle model possesses layers with vertical gradients. Elastic mod-

uli and density in each layer are affected by pressure, temperature, pore fluids, and crack density.

All of these quantities change continuously with depth, many having a well known functional depen-

dence on depth. Virtually all of the regional phases can be strongly afiected by velocity gradients.

The best known effects of velocity gradients are on the Pn and Sn, in which small changes in the

velocity gradient beneath the Moho can make large changes in the decay of Pn and Sn with dis-

tance. Methods of synthesizing complete regional seismograms often inadvertently ignore the effect

of crustal gradients by parameterizing the Earth model with planar homogeneous layers. To remedy

this problem we have modified the locked mode method of synthesizing complete regional seismo-

grams to include the Langer uniform asymptotic approximation to vertical wavefunctions within
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layers having linear vertical velocity gradients. Good agreement is obtained in gradient models

between synthetics computed using the Langer-locked mode method, the colocation method, and

the conventional locked mode method in models parameterized by thin homogeneous layers. Errors

in calculated displacement introduced by the use of the Langer approximation remain less than

several percent for wavelengths A < 0.2V/VV. Whenever it is necessary to represent gradients

accurately, the Langer-locked mode method is computationally more efficient than the locked mode

method using thin homogeneous layers. By reducing the number of parameters needed to describe

an Earth model, the Langer-locked mode method will also simplify the inverse problem of deter-

mining structure using observed and synthetic regional seismograms. Test calculations of regional

seismograms confirm that the Pn and Sn phases are strongly affected by the magnitude of the

velocity gradients in beneath the Moho, but that Lg is only weakly affected by the details of crustal

layering.

INTRODUCTION

Complete seismograms at local and regional distances are now routinely computed in plane layered

models for a variety of source receiver geometries, source depths, and source types by integrating

or summing over wavenumbers (Bouchon and Aki, 1977; Kind 1978; Wang and Hermann, 1980)

or summing locked or leaky modes (Harvey, 1981; Kerry, 1981; Haddon, 1986; Nolet et al., 1989).

The computational expense of these calculations remains relatively cheap as long as the crust and

upper mantle model can be described by a small number of planar, homogeneous layers.

Seismograms synthesized in models composed of small number of plane homogeneous layers
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ignore the continuous depth dependence of elastic moduli. Usually seismograms are synthesized in

simple models composed of a two or three homogeneous layers of crust overlaying a homogeneous

lid, low velocity zone, and upper mantle beneath the lid. Since Earth curvature is ignored in these

calculations, the model is effectively one in which each layer has a small negative gradient with

depth.

The simplest generalization of a homogeneously layered model is to allow for the effect of velocity

gradients. Any realistic crustal and upper mantle model possesses layers with vertical gradients.

Elastic moduli and density in each layer are affected by pressure, temperature, pore fluids, crack

density and aspect ratio. All of these quantities change continuously with depth, many having a

well known functional dependence on depth.

Virtually all of the regional phases can be strongly affected by velocity gradients. One example

is dispersion of the fundamental mode Rayleigh wave, or Rg phase at local and regional distances.

Crustal models having a homogeneous layer at the surface produce an unrealistically impulsive,

undispersed Rg arrival. To match observed data, the fundamental mode arrival must be artificially

removed or attenuated. Perhaps the best known effects of gradients on regional phases are those

on the Pn and Sn phases. In a plane layered model, the Pn and Sn phases are classical head waves

traveling just beneath the Moho. Hill (1971) and 'erven, and Ravindra (1971) have shown how

gradients transform classical headwaves into interference headwaves or "whispering gallery waves"

(e.g., Cormier and Richards, 1976; Menke and Richards, 1980). The distance decay of both classical

and interference headwaves is frequency dependent.

In this paper, we describe the results of incorporating velocity gradients in crustal and upper
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mantle models using the locked mode method. Gradients are introduced into the computations

by allowing each layer to be vertically inhomogeneous and applying the Langer approximation

(Appendix I) to calculate an asymptotic approximation in frequency to the vertical wavefunctions

in each inhomogeneous layer.

A brief review of the locked mode method is first given. Mathematical details of the Langer

approximation and its incorporation in the locked mode method are described in Appendices I and

I. The remainder of the paper describes the results of tests conducted to determine the accuracy

of the Langer approximation and how it breaks down as the gradient in the layer increases. A

discussion and example show how depth and frequency dependent attenuation can be included in

the Langer-locked mode method. The paper concludes with discussion of synthetic seismographs

showing how gradients near the free surface and Moho can radically affect the propagation of some

of the principal regional phases.

Review of the Locked Mode Method

Following Harvey (1981; 1985), the complex displacement spectra are evaluated from

Ru(W ,IrOrtzr) 2- -R I-RI.-ij:-E RA(n,W ) RrT(n, , m) RE(n,L,,Z,) R (n, ,, rOr, Zr)
ni M

(1)

LU(W,XrOr, Z) - LpI - i - LA(n,w) L ET(n, w, m) LE(n,w, z,) L(n,w, M, X, Or,Zr)

where the subscripts R and L denote Rayleigh and Love modes respectively.
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RA and LA area scalar amplitude factors defined by

RA(fw) = - RkY 23 (O)
A Y12(0)/Ok

(2)

LkD 2 (O)
LA(n,w) = - D(O)

RET and LE T are row vectors defined from the source jump vectors. RP and LI are defined from

products of eigenfunctions for displacement (RE,, RE2) and LE), and vector cylindrical harmonics

RIP(n, w, m, ,6.,Z,) = R1nw, z,)P(n,w, m, X,., 6) + RE2(nlw, m~,MZr, 6,)

(3)

p.I and L 5I are branch cut integrals, which account for energy that cannot be represented by

normal modes, and are associated with near vertically propagating P and S waves that leak into

the halfspace. The locked mode method does not evaluate the branch cut integrals. It chooses

the halfspace to be sufficiently deep and fast such that all of the energy important to a particular

time window at a particular distance can be accurately represented by the locked mode summation

alone.

Seismograms are synthesized by evaluating the complex spectra at discrete frequencies and

inverting to the time domain by fast Fourier transform. A small complex frequency can be added

to attenuate all arrivals that arrive outside of the finite time window given by the folding frequency
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of the discrete Fourier transform (Rosenbaum, 1974; Miller and Schott, 181). Harvey (1981,

1985) gives detailed derivations of the locked mode method and describes its implementation in

media described by homogeneous layers. The principal modifications of the method for use with

the Langer approximation are concerned with the calculation of the eigenfunction vector E and

the scalar amplitude factors RA and LA. The partial derivatives with respect to k appearing in

the amplitude factors are calculated by difference derivatives. Appendices I and II describe the

calculation with the Langer approximation of the Y matrix elements and the vectors D and E.

The Langer approximation can also be implemented in methods of synthesizing complete seis-

mograms that numerically integrate over horizontal wavenumber and slowness (Cormier, 1980).

The primary advantage of the locked mode method is that most of the computational effort in-

volved in the calculation of the amplitude factors and eigenfunctions can be catalogued for use with

different source-receiver geometries and different moment tensor representations of point sources.

Although response functions can be similarly cataloged in approaches that integrate or sum over

wavenumber or slowness, this is rarely done in practice. A secondary advantage of the locked mode

method is that a large body of literature exists in modal notation on inversion for structure and

source parameters. The analysis of problems using normal modes of the whole Earth at low fre-

quency and long range can usually be directly adapted to higher frequency and shorter range using

locked modes (e.g., Gomberg and Masters, 1988).
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The Accuracy of the Langer Approximation

The Langei approximation assumes decoupling between P and S waves and up- and down-going

waves in each gradient layer, and the criteria for its accuracy are thus similar to those used

in ray-asymptotic solutions to the elastodynamic equation of motion in inhomogeneous media

(Richards, 1976). Qualitatively, the Langer approximation is known to become less accurate as

non-dimensional ratios A/(v/Vv) increase, where v is a P or S velocity or density (Richards, 1976;

Chapman, 1974). Another way in which this is commonly phrased is that the wavelength must be

much smaller than the scalelength of the medium, 1, where I is the maximum of (a/Va, /3/V3, p/Vp)

(Beydoun and Ben-Menahem, 1985). A goal in this study waq to quantify the breakdown in the

Langer approximation as the scalelength of gradient layers decrease, determining exactly how large

the ratio A/I can be before errors in calculated displacement exceed some specified bound.

The first step in such a study is to choose accurate reference synthetic seismograms in models

having strong gradients. Spudich and Ascher (1983) published synthetic seismograms calculated

by the numerical colocation method for a simple model consisting of a gradient over half space.

The gradient layer in this model was parameterized by a sequence of 40 thin layers (Figure 1), the

width of each thin layer approximately equal to one-tenth the wavelength of shear waves at 1 Hz.

Excellent agreement was found between the locked mode synthetics and the colocation synthetics.

This result confirmed that locked mode synthetics computed in models in which gradient layers

are represented by thin layers can be used as accurate reference synthetics to test the Langer

approximation.

To test the accuracy of the Langer approximation, seismograms were synthesized using the
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locked mode method using the Langer approximation in a series of models with increasing gradients

in P and S velocity and density in a layer over a halfspace (Figure 2). Figure 3 compares the

dispersion curves of the locked Love and Rayleigh modes calculated with Langer approximation

in a thick continuous gradient layer with those calculated by parameterizing the gradient layer

with thin homogeneous layers. Even for the most severe of the gradients shown in Figure 2, the

dispersion curves calculated using the Langer approximation remain quite accurate throughout

nearly the entire range of phase velocity and frequency. The primary region of error occurs for the

low frequencies of the fundamental mode. This is not unexpected since most of the energy of the

fundamental mode in this frequency band is confined to the strong gradient layer near the surface.

As expected, the errors in the dispersion curves calculated by the Langer approximation are largest

at low frequency, where the wavelength approaches the scale length of the gradient layer.

Figure 4 compares reference synthetics and Langer approximated synthetics for the sequence of

gradient models shown in Figure 2. Although the kinematic errors in the mode dispersion calcula-

tions are small throughout most of the frequency band, the dynamic errors in mode amplitudes are

sufficient to produce poor matches in the group velocity band corresponding to the fundamental

mode and the first few higher modes. These effects can be seen in Figure 4, in which the early

portion of the seismograms computed by the two methods are more closely in phase but become

progressively out of phase in the time window corresponding to the arrival of the fundamental

mode and first few higher modes. The agreement between the two methods is much better for the

transverse component than the radial or vertical components of motion.

The match between reference and Langer approximated synthetics becomes nearly perfect for

• , i l I I I I l I I I l8



weakest surface gradients (model I in Figure 2). The seismograms computed by the two methods

overlay one another to within the thickness of plotted lines. The difference seismograms in Figure

5 are largest near the peak oscillations where small differences in arrival time of pulses having high

slopes produce large differences. Since the dominant frequency the synthetic seismograms is about

0.5 Hz., one can conclude that errors in the use of the Langer approximation become less than

several percent when the ratio A/1 is less than or equal to 0.2. If one were not interested in the

accuracy of the fundamental mode at frequencies less than 1 Hz, the Langer approximation could

synthesize the higher modes in this example with high accuracy across the entire frequency band.

The fundamental mode could be synthesized with high accuracy at frequencies greater than 1 Hz.

Intrinsic Attenuation

To be practically useful, any method of synthesizing complete seismograms at lozal and regional

distances must be capable of including intrinsic attenuation. The incorporation of the attenuation

in the Langer approximation simply consists of the analytic continuation of all formulae to complex

velocities (Cormier and Richards, 1976, 1989). Care must be exercised in the definition of branch

cuits of cquare roots and fractional powers appearing in both the analytic expressions and function

subroutines used in evaluating the Langer approximation (see Appendix I), but this is not an

insurmountable problem. The Langer subroutine modified for use with locked mode calculations

has been tested in problems involving integration in the complex ray parameter plane combined

with complex, frequency dependent velocity. It returns generalized vertical wavefunctions and

slownesses that are continuous in the complex ray parameter plane except for poles and branch
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cuts, which emanate from complex ray parameters corresponding to grazing incidence on boundaries

in an anelastic model. Test calculations have demonstrated that the position of these singularities

do not impede a successful search for the complex zeros of the dispersion functions of locked modes

in an anelastic model.

,"' absorption band model of attenuation is assumed (e.g., Lundquist and Cormier, 1980). At

any radian frequency w in this model, the complex velocity is given by

3(w) = /3, 1 + 2/r Q-1 A, (4)

1 + 2/7r Q 1 A,.(4

where

A,= In (w + w,

iW + W2 )/

(5)

A,= In( +
(iW, + W2

/3, is the real velocity at a reference frequency w,.. Complex P velocity a is calculated by the same

formula, with an option to constrain attenuation to be pure shear or to specify a different peak

attenuation parameter Q-1 for P waves. Ideally the reference frequency Wr should be chosen to

be in the middle of the frequency band of the seismic data used in determining a trial model for

a given region. Complex velocities are calculated at each layer boundary by equation 5 above

and linear gradients of complex velocity are are assumed in each layer. The delay time function r

needed by the Langer approximation is calculated as described in Appendix II, but it now must

be recalculated at each frequency. It is possible to specify different peak Q3 values as well as
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different upper and lower limits, w, and w2 , of the relaxation band at the top and bottom of each

inhomogeneous layer.

A test anelastic model is shown in Figure 6. The attenuation model is an absorption band model

in pure shear attenuation having gradients in peak attenuation QP', and low and high frequency

corners, W,w 2 , of the relaxation band. A minimum value of Qc = 20 is assumed at the surface.

The velocities and Q values are similar to values measured from regional seismograms in New

England (Kafka and Reiter, 1987). Locked mode seismograms were synthesized in these model using

two different approaches. In the first approach, only the real part of the complex velocities was used

in calculation of mode amplitudes and eigenfunctions, a complex phase velocity was substituted in

the cylindrical harmonics describing the horizontal propagation of each mode. This complex phase

velocity is taken from the complex pole k estimated by first order perturbation theory. This is the

standard approach for handling attenuation in surface wave and locked mode calculations (Harvey,

1985; Panza and Sudhadolc, 1987), and is assumed to be accurate if the Q factor is sufficiently high.

Day et al. (1989) have shown this approach to be inaccurate for some regional seismic phases even

at Q values on the order of several hundred. For this reason, seismograms were also synthesized by

an exact approach, in which a search was made for the complex roots of the dispersion function and

all formulae, including amplitude'factors and eigenfunctions, were evaluated at these complex roots.

The complex pole searching algorithm was based on one suggested by Schwab and Knopoff (1971),

with modifications near osculating points of the dispersion curves. Near these points, the complex

roots are found by the same algorithm for a series of increasing Q- 1 values, approaching the true

Q- 1 model. Checks are made for duplication or omission of poles at the end of this procedure for

11



each frequency.

Figure 7 compares the results of these two methods for incorporating attenuation of the funda-

mental mode Rayleigh wave. The seismograms computed by the different methods nearly overlay

one another at all distances. The exact method reduces some high frequency numerical noise,

which is barely visible at the scale of Figure 7. The differences in the complex phase velocities

computed by the two methods are on the order of 0.001 km/sec in the real part of the complex

phase velocity and vary from 1 X 10- 10 to 1 X 10- 4 km/sec in the complex part of phase velocity as

frequency increases up to 2 Hz. The differences between the depth behavior of the real part of the

complex eigenfunctions are insignificant between the two methods. From these results it can be

concluded that the perturbation approach to attenuation remains very accurate in the synthesis of

the fundamental mode for Q values as low as 20. For the synthesis of higher modes, particularly

those contributing to refracted P and S and interference head waves, more detailed tests have shown

that the perturbation approach introduces significant error as Q values decrease below several 100.

It is reasonable to assume that gradients in the real part of elastic moduli are also associated

with gradients in the imaginary part of elastic moduli. We have demonstrated in this section that

the Langer approximation can be applied to locked mode calculations in models having gradients

in complex elastic moduli. Often a very low Q layer is required in a surface layer in order to

produce realistic simulations of seismograms observed at local and regional distances (e.g., Panza

and Sudhadolc, 1987). If the apparent attenuation of such a layer is truly due to viscoelasticty,

its effects can be accurately calculated by complex locked modes. It is worth noting, however,

that such apparent low Q's are likely due to a combination of scattering by topography of layer
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boundaries and volumetric heterogeneities and frictional sliding of grains and open cracks. Neither

of these effects can be simulated by a combination of vertically varying layers and linear viscoelastic

relaxations.

Effects of Gradients in Realistic Models

To test the effects of crustal and upper mantle gradients on regional seismic phases, locked mode

synthetics were computed in two simple models MH and MG (Figure 8). Model MH consists of

a two-layered crust overlaying a homogeneous mantle. MH has also been used for testing and

benchmark timing of many different techniques of computing complete seismograms at regional

distances (Richards and Mithal, personal communications). Model MG consists of a single crustal

layer having a positive gradient with depth, overlaying a mantle having a positive gradient with

depth. The mantle gradient is consistent with the increase in seismic velocities typical of reference

earth models between the Moho and 400 km depth. The depth averaged crustal velocities of MH

and MG are identical. Both models have an attenuation structure, with Q's in a high enough range

that simple perturbation theory can be accurately used to calculate the effects of attenuation in

the locked mode method. Seismograms were synthesized in a frequency band up to 2 Hz. for the

source and receiver geometries used by W-Y. Kim (1987), who synthesized seismograms in model

MH using wavenumber integration.

The synthetic seismograms for the first 10 Rayleigh modes (Figure 9) are very similar for both

model MH and MG. The group velocity window of the energy centroid corresponds to that expected

for the Lg phase. The strong similarity of the synthetic seismograms suggests that Lg is not very

13



sensitive to the details of the crustal model, its coda primarily being controlled by the total thickness

of the crust and its average shear velocity. It is probably possible to simulate realistic Lg phases

using a very few number of crustal layers. Introduction of crustal layers in a modeling experiment

may not be necessary unless there is compelling evidence for crustal discontinuities observed in the

earlier 4ime window in the form of refracted body waves and interference head waves.

In a comparison of complete seismograms (Figure 10), the seismograms are very similar at

closer ranges but at 300 km some differences begin to be notable. Pn and Sn are very weak in

the MH simulation, but are very strong in the MG synthetic. Pn, Sn, and crustal reverberations

converted to Pn and Sn are so strong in the MG synthetic that they dominate Lg in amplitude,

and the seismogram seems to be a series of spikes when the display is scaled on the peak amplitude.

The comparison confirms what is known about Pn and Sn as interference head waves in models

having positive gradients below the Moho. A positive gradient acts to enhance the amplitude

of the interference head wave far above what would be predicted for a classical head wave in a

homogeneous layer (Hill, 1971; Cerveny and Ravindra, 1971; Menke and Richards, 1980).

CONCLUSIONS

In this paper, we have demonstrated that even small gradients of VV = 0.03 sec. - ' can substantially

affect the distance decay of interference head waves such as Pn and Sn. Lg, on the other hand, is

only verly weakly sensitive to details of crustal layering or gradients. The peak amplitude and coda

length of Lg primarily depends on total crustal thickness and average shear velocity of the crust.

In either a locked mode or wavenumber integration approach to synthesizing complete seismo-
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grams, the Langer approximation can accurately approximate vertical wavefunctions in inhomoge-

neous layers having a single ray turning point for wavelengths that are small with respect to the

scale length of the layer. This result can be quantified by stating that errors in the amplitude and

phase of synthetic seismograms are less than several per cent for wavelengths A < 0.2V/VV, where

V i- a velocity or density function. At 5 Hz. this inequality is statisfied by gradients beneath the

Moho as high as 0.8 sec. - 1 .

Propagation of the wavefield using the Langer approximation in a vertically inhomogeneous

layer will often represent a computational savings over propagation though the gradient layer pa-

rameterized by a sequence of thin layers. An example of a gradient layer parameterized by 40 thin

homogeneous layers executed about a factor of two slower in both the pole searching and eigenfunc-

tion evaluation compared to the same calculations using the Langer approximation in the gradient

layer parameterized by analytic velocity functions. A calculation in a thick homogeneous layer,

however, would still always be more efficient than a calculation using the Langer approximation in

an inhomogeneous layer of the same thickness. A model parameterization that may be the best

compromise between computational efficiency and realism in the behavior of regional phases would

be one having a crust composed of homogeneous layers overlaying a mantle composed of gradient

layers. Seismograms synthesized in such a model could accurately predict the Lg phase as well as

the Pn and Sn phases. (This study did not investigate the importance of crustal gradients for the

Pg phase.)

The Langer locked mode approach to synthesizing complete seismograms may also offer some

advantages in waveform inversion for earth structure. By reducing the number of parameters needed
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to describe a model, the inverse problem for structure would be simplified and fewer experiments

would be needed to determine the maximum number of resolvable layers. A layer need only be

introduced whenever the data firmly suggest the existence of first order discontinuities.
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APPENDIX I - THE LANGER APPROXIMATION

Vertical Wavefunctions

The notation for the Langer approximation (Langer, 1932; 1949) differs among different authors

who have applied it to seismic wave propagation. (Richards, 1976; Woodhouse, 1978; Chapman,

1974; Doornbos, 1981), involving either Hankel functions of order 1/3 or Airy functions of different

types or arguments to give exponentially decaying and growing type solutions below a turning

point. The notation adopted here is basically that given in Aki and Richards (1980).

The Langer approximation is a uniformly asymptotic approximation to the vertically separated

part of the solution to the elastodynamic wave equation in a region in which elastic moduli and

density vary continuously with depth. The zeroth order term in frequency in the asymptotic solution

is given as

= e --3 Ai(- eT (3 )

(Al )(2) e 14 ) -2)

r,(r) -v2,re (e ) Ai(- e 3
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where

Ai is an Airy function and

¢,=(312(dr. )2/3

C- (312wrp)/ 3

r, = jacidr
p

ro= j odr

A., A t/a2 - p2/r 2

A# V1/#2 - 9/r 2

a and /3 are the P and S velocity respectively at radius r, p is the ray parameter in a spherical

Earth, and rp is the turning point radius, i.e., that radius at which A, or Ap vanishes. In each

inhomogeneous layer, the velocity functions a(r) and /3(r) are assumed to be analytic and to

possess only one turning point rp in the domain of complex p used in synthesizing a seismogram.

The Langer approximated wavefunctions can also be written in terms of Hankel functions of order

1/3 (Richards, 1976; Doornbos, 1981).

The i wavefunctions are those for P waves; the a wavefunctions are those for S waves. Several

possible pairs of independent solutions may be chosen to define fundamental matrices, which can

be used to solve problems in wave propagation in media consisting of a sequence of vertically
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inhomogeneous layers. The pairs (7r(), 7r(2)) and (ao('), a(2)) correspond to up- (1) and down-

going (2) waves. The pairs (ir('), 7r( 3)) and (a('), a(3)) correspond to up-going (1) and standing or

evanescent waves (3). When the turning point radius rp is greater than r, the wavefunctions ?r(3)

and a(3) are always exponentially decaying functions with decreasing radius r

Vertical Slownesses

Implementation of the Langer approximation in problems in which elastic boundary conditions

must to be satisfied at model discontinuities is simplified by the introduction of generalized cosines

(Richards, 1976; Aki and Richards, 1980) or generalized vertical slowness functions, which are

defined as follows

d~r(l)=

dr(2)/( r)= r

d-r(3)/(iw7r(3))
= -dr

(AI.2)

= d ar(1))
dr "

d o( 2) /(i wa ( ))

dr

= d(3) /(io( 3))
dr"

The normalization of the vertical wavefunctions differs slightly from that given in Aki and

Richards (1980) and has been chosen such that the following relations are satisfied

%r(1)7r(2) + r(2) r(1) - 1
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f(1).( 3 ) + ir(3)w(1) = 1

(AI.3)

Oa(1)V(2) + 0(2) 7r = 1

I(1)w( 3 ) + /a(3)(= 1

These relations can be demonstrated by substituting the Langer approximation to the vertical

slownesses and the Wronskian relations between the Airy functions having different arguments.

Equations A3 are satisfied exactly when only the zero order terms in frequency are kept in the

definitions of the vertical slownesses.

Branch Cuts and Complex p

The functions that define the generalized vertical wavefunctions and slownesses as well as the special

function subroutines from which Airy functions or Hankel functions of order 1/3 are commonly

constructed contain branch cuts emanating from points in the complex p plane corresponding

to ray parameters grazing the model discontinuities. Extreme care must be exercised both in the

definition and the choosing of branch cuts appearing in all functions of variables raised to fractional

powers. A subroutine for the Langer approximated wavefunctions and vertical slownesses has been

used, in which the branch cuts of the vertical wavefunctions are defined as in Cormier (1976) and

Cormier and Richards (1989). This wavefunction subroutine has been tested in a wide variety

of problems involving both complex velocities and complex p. For examples, see Cormier and

Richards, (1989).
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Fundamental Matrices

Boundary conditions in an medium consisting of n inhomogeneous layers can be handled in the

same manner as a medium consisting of homogeneous layers, but with the Langer approximation

to the vertical wavefunctions and vertical slownesses substituting for exponential functions and

cosines.

P-SV

As a function of radius r, the fundamental matrix for P-SV propagation and Rayleigh modes is

taken to be than given in Cormier (1980):

F (r) p/r 7r( )  - i p/r or(2) i a ( ) _ -i. ( 2)

4P -iA (1) /i~(2 B6 (1) -iOb (2)

B ir(l) - B r(2) Ac(l) A0(2)

(AI.4)

iA7r(2) B pi(2) -41r(2) -i p/r 7r(2)

fT_ -iAr(') B 7r(1) -7rmC) i p/r r( )

-iB ,( 2)  Aa(2 ) - p/r ar( 2
) ij1 ( 2)

-i~ia(' )  -Aa (l )  p/r a(1) i 0r,0)

The fundamental matrix may alternatively be defined using the wavefunction pairs (r(1), ir(
3 ))

and (a(l), a(2)) (Cormier, 1980). This fundamental matrix has exactly the same form as AI.4,

but with (3) replacing the (2) superscripted wavefunctions and the accent replacing the' in the
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vertical slownesses. In all calculations, the (3) superscripted wavefunctions are substituted for the

(2) superscripted (down-going) wavefunctions in the p domains in which exponentially decaying

and growing vertical wavefunctions exist. With a few simple modifications described by Doornbos

(1981), the fundamental matrix defined in AI.4 can be applied to layers having a negative as well

as a positive gradient with depth.

Fundamental Matrix for SH Propagation

The SH fundamental matrix and its inverse are

F (r ) - I - 1 /2 (/) -A- 1/2  a (2 ) j

i 01/2 a() _i U/2 a (2)

(AI.5)

= [ .. j- i A1/2 j a (2) _ ,A- 1/2 a (2)

01 / 2 7} C,(1) IA-112 a(2

Model Parameterization

Since the Langer approximation allows layers to be vertically inhomogeneous, the effects of Earth

curvature are built into the model parameterization. All formulae are evaluated using velocities

and densities given as functions of radius, r, from the Earth's center. In each inhomogeneous layer,

the velocities are specified by analytic functions, which have only one turning point solution in the

p domain of interest. Layer boundaries are introduced and boundary conditions are evaluated at

discontinuities in velocity derivatives as well as first order discontinuities.
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To provide analytic forms for the delay time functions r', and rp, each inhomogeneous layer is

parameterized by making the flattened velocity be a linear function in the flattened depth coordi-

nate, z. The usdal (Miler, 1971) mapping between the flattened velocity function vf(z) and the

true velocity function v(r) is assumed :

v(r) = rv (z)lR.

where

n = R. log(rC/Re)

where Re is the radius of the Earth.

The flattened velocity function vf is assumed to be a linear function in flattened depth, com-

puted from the values of vf at flattened depths z- and zn+_1 corresponding to radii r- and r!+_,

bounding the top and bottom, respectively of vertically inhomogeneous layer n. The analytic form

of the delay time function 7(r) becomes

Z+n ( ;Re/P + .,Ip - vi)]- Rr/ - - R/p In(AI.6)'-)) "-, p

This parameterization is adequate in representing thick regions of the crust and uppermost

mantle, in which velocity gradients are nearly constant or slowly varying. Usually less than ten

inhomogeneous layers are all that are needed to describe models having several first order discon-

tinuities and/or discontinuities in gradient. Alternative model parameterizations, which give an

analytic form of r, are discussed by Cormier (1980), (erven , and Jansky (1983), and Cormier and

Richards (1989).
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APPENDIX 11 - Mode Amplitudes and Eigenfunctions

Rayleigh Modes

The summation of locked Rayleigh modes requires the calculation of an antisymmetric Y matrix

having five independent elements.

The Y Matrix

At the radius r. at the top of the capping layer, starting values of the Y matrix are taken to be

13 = -A. p/r - Bc\..

Y14= -ip, A (AII.1)

Y23= i Pc Xa.

Y34= - X.- p /r'

where i = v'T, and

S= i p2/r - l/#32

'\= i p/rc2 1/.

A, = 2p 2/r. PC - Pc

B, = 2 p2/r2 Pc
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and 14c, Pc, ac, )3c are the shear modulus, density, P velocity, and S velocity, respectively, of the

high velocity capping layer.

At any radius r, Y can be computed from the product

Y(r) = KT(r, r+ ) Y(r-) K(r,r + ) (AII.2)

where K is a P-SV propagator matrix equal to a product of intralayer propagator matrices for each

layer, m, m + 1, etc.

K =K (,r + )Km+(rr++i).... Kn(r_,r + ) (AII.3)

Layers are separated by boundaries at which velocities and/or densities have either first or

second order discontinuities. Within each layer, the velocity functions are continuous, analytic

functions. Each interlayer propagator matrix, Km is constructed from the zeroth order term in

frequency of the uniform asymptotic approximation to the fundamental matrix F of the inhomo-

geneous layer. Since the uniform asymptotic approximation of Langer is assumed, the velocity

functions within each layer must have no more than one turning point for each ray parameter, p.

With this restriction, computations can still be conducted in a complicated model having one or

more low velocity zones, as long as this model is built from "layers" in which the analytic functions

for P and S velocity have only a single turning point for each p.

The intralayer propagator is defined by

M+)=F(r-) F(r+) (AII.4)

Substituting in equation AII.2 the forms for the fundamental matrix and its inverse from

equation AI.4, and simplifying the resulting expression gives recursion relations as follows for the
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upward propagation of Y matrix elements:

4

Y 1 2 (r) = ,d(r-) kW. kGn, - 2 A(rt 1 ) B(r+..1 ) oW,. oGn
k=i

4

Y1 3(;) - kd 2(r-) [A(r'...)B(rl 1.) - p/r;t- E (rn-l+)] 1gWn kG~

k=1
4

= - Z-' kd3(r;) kWn kGn AI5
k=1
4

= 1) kd4(r-1) kWn kGn

k=1

4
Y 3 4 (r) = dF; 1  W G + 2 p/r+.4 0 , G

k=1

where the quantities kdi(z), kWn, k:Gn are defined as follows:

kdl(r) = -A 2 (r) - B 2(r) kA,(r) k"B,

kd2(r) =A(r) p/r + B(z) kA.(r),kAo(r)

kd 3 (r) = ip(r) kA,6(r) (AIIL6)

kd4(r) = -ip(r) kA\.(r)

kd5(r) =k Ap(r) kA.(r) + (p/r)2

kWn -kdl(r .I)Y34(r- ) + 2kd2(r *l)Y13(r- 1) + kd 3 (Z n-Y4z~x

+kd4(r+lY3t,. 1  + -d( 1Y2(~) (AII.7)

for kc 6 0 and

OW p/r,+ Y12(r- 1) + [A(r+.1  + p/r+.1 B(r+ )IY1 3 (r- 1)

- A(r+1  B(r,-1 ) Y34(r->1  (AI1.LS)
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= -r(2 (r; u()(r) 7('(r; 1 ) P(N)(.i pr)~~ 1  AI

=G 7r'()c '(r-) 7r( 2 (r ) cr(2(r+ 1  
r

%2p(r;)p(r.+ 1)

7r(2); =- 
r

= i 7 (;pr;)_j

n n(rn- (r=

2 An-; = ~r-(r;1)

,A,,(r-~ n

IA,,(r+)=i(;

IA0 c(r- )=

n-11



4A0O(r;..)=
4'\P(r; +

Layer Reduction

The first term (k = 1) in the summation in equation AII.5 is of the same form as the starting

values Y matrix in the capping layer in regions of slowness in which the vertical wavefunctions

behave exponentially. When this first term is exponentially larger by several orders of magnitude

than the (k = 2,3,4,5) terms, then the Y matrix calculation may be started at a higher layer,

taking this higher layer as the capping layer. This procedure of layer reduction is analogous to that

described in homogeneously layered models (Panza and Sudhadolc, 1987).

Eigenfunctions

Although propagation of the Y matrix elements has been shown to be numerically stable at ar-

bitrarily high frequency (Abo-Zena 1979; Harvey, 1981), numerical problems in the calculation of

the Rayleigh eigenfunctions reoccur if E is calculated by multiplying propagator matrices. One

approach to this problem is to divide a layer into thin, pseudo layers, and rescale the propagator

matrix after propagation through each thin layer. Better techniques, however, can be formulated,

which do not require the introduction of additional pseudo layers.

One technique, described by Harvey (1985), expresses the eigenfunctions in terms of Y matrix

elements by propagating the wavefield upward from the cap layer and downward from the fr,'T
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surface. Thus, since the calculation of Y elements is numerically stable, so is the calculation of the

E eigenfunctions. In this technique, eigenvalues can be normalized at the source depth, offering

numerical advantages in the calculation of channel waves having vanishingly small energy outside

of a waveguide.

The technique used here also does not require pseudo layering, but retains the standard nor-

malization of the E1 function to 1 at the free surface. The first step in this technique is to recognize

that the stress eigenfunctions E 3 and E4 can be calculated from the displacement eigenfunctions

E1 and E 2 by

E3= -Y 14/Y 34 E1 - Y24 /Y 3 4 E 2

(AII.1O)

E4 Y 13 /Y 3 4 E1 + Y 2 3 /Y 3 4 E 2

Using these relations, the four equations that propagate the E vector,

E(r) = K(r, r,) E(rn) (AII.11)

can be rewritten as two equations that propagate E1 and E 2 ,

El(r) = L(z,z,,) El2  j (AII.12)
E-2(r) E2(2)

and the two equations given in AII.1O between the displacement eigenfunctions and stress eigen-

functions.
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A new 2x2 propagator matrix L is defined having components

L1 = K'i - K 13 YI4/Y3A + K 1 4 Y 13 /Y34

L12 = K 1 2 - K 1 3 Y24 /Y 34 + K 1 4 Y23 /Y 34

(Al1.13)

L2, = K21 - K23 Y14/Y3 + K 2 4 Y13 /Y 34

L22 = '22 + K 23 Y24 /Y 34 + K 24 Y23/Y34

To ensure numerical precision in a machine calculation, the individual propagator elements as

well as the recursion formulae in AII5 for the Y matrix elements must be substituted into thc

definitions of the the Li elements in AH.13, a fraction formed with the common denominator of

Y 34, and the numerator of the fraction simplified. When this simplification is done, it is seen that

all numerator terms that potentially are of the largest exponential order cancel. Although many

cancellations occur, the resulting expressions for the Li elements are still quite lengthy and are

not given here.

Love Modes

D, and D2

In this case, calculation of the dispersion function D1 eigenfunction vector E can proceed by simple

multiplication of propagator matrices without loss of numerical precision. The vector (D1 , D2)

in the notation of Harvey (1985) is equal to the vector Es1 in the notation of Cormier (19S0).

In the capping layer, (DI, D2 is simply equal to the first row of the inverse fundamental matrix
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for SH waves. Any constant may be chosen to multiply the starting value of (Di, D2 ), since this

constant will cancel in the definition of eigenfunctions and in the ratio aD (O)cgD(O)akappearing and

the expression for the total response. Starting values of D1 and D2 at the top of the cap layer are

thus taken as

DI = -ip, Ag,

(AII.14)

D2= -1/3

D1 and D 2 are propagated upward by multiplication of SH propagator matrices. Since (D 1 , D 2)

are related to the inverse fundamental matrix, one must right multiply the starting values by the

SH propagator matrix.

Di(r) 1 [Di(rc)
K(r, r+ )  (All. 15)

D2(r) D2 (r,)

Eigenfunctions

Love wave eigenfunctions are defined by

Ei(r) = D 2(r)/D 2 (R,)

(AII.16)

E2 (r) = DI(r)/D2 (Re)
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In the residue calculation, scale factors can be applied in each layer and discarded during

upward propagation. This is because all scale factors cancel when ratio L is formed. In

the eigenfunction calculation, the total scale factor of each Di must be saved in order to properly

describe regions of exponential decay of the eigenfunction. In the cases where E1 and E 2 are

exponentially small, the depth of the capping layer can be raised and calculations started at a

shallower depth.
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Figure 1: Discrete (above) and continuous (below) representations of a gradient in P velocity in a
test model of the crust.
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Figure 2: Test models having three different intensities of gradients in an inhomogeneous layer
overlaying a homogeneous halfapace. Model 1 is the test model of Spudich and Ascher (1983)
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Figure 3: (a) Love and (b) Rayleigh mode dispersion curves calculated in Model I using a thin
layered representation of the gradient layer (solid) and the Langer approximation in a continuous
representation of the gradient layer (dashed).
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Figure 4: Comparison of synthetic seismograms calculated in Model I using a thin layered represen-
tation of the gradient layer (solid) and the Langer approximation in a continuous representation of
the gradient layer (dashed). The source is a point double couple at 4.92 km. depth, corresponding
to a vertically dipping strike slip fault, striking to the north, observed at receivers at 450 azimuth. A
step function time dependence of the scalar moment is assumed. Shown are the three components
of particle velocity. The effects of geometric spreading of body waves have been apprc.dmately
removed by multiplying each seismogram by range.
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Figure 5: Comparison of synthetic seismograms calculated in Model 3 using a thin layered repre-
sentation of the gradient layer and the Langer approximation in a continuous representation of the
gradient layer. The result of the discrete method is shown at each range. The lower amplitude
trace labeled DIF is the difference between the seismograms calculated by the two different param-
eterizations, (D) discrete thin layered and (CL) continuous with the Langer approximation, i.e.,
DIF(t) = SD(t) - SCL(t). An approximate correction for geometric spreading of body waves
has been made.
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Figure 7: A comparison of the synthetic for the vertical component of the fundamental mode
Rayleigh wave using perturbation theory and an exact, complex mode calculation. At each range,
the results of the exact calculation are followed by the differential seismogram obtained by subtract-
ing the seismogram calculated by perturbation theory from the seismogram calculated by complex
modes and eigenfunctions. Each trace is normalized by its peak amplitude, indicated by the number
to the left of each trace.
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and overlaying a homogeneous mantle; and model MG having a single crustal gradient layer and
mantle gradient layer.
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Figure 9: A comparison of synthetics in model MH (above) and MG (below) computed by the
Langer-locked mode method, summing the first 10 Rayleigh modes. Shown is the vertical dis-
placement for a double couple point source at 30 kma depth. The orientation of the double couple
corresponds to a vertically dipping strike slip fault, striking to the north, observed at an azimuth
of 45 . A step function time dependence of the scalar moment is assumed, and the result has been
convolved with a short period WWSSN instrument response.
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